
Risk assessment is used to estimate the mag-
nitude, likelihood, and uncertainty of
environmentally induced toxic effects.
Epidemiologic analysis, traditionally based
on long-term cohort or case–control studies,
provides retrospective causal associations
between exposure to a particular environ-
mental stressor and an exposure-related dis-
ease end point. Recent research initiatives
have propelled a shift toward exploring mole-
cular epidemiology and molecular biological
markers (biomarkers) as a means of providing
more immediate, quantitative risk assessment
of potentially deleterious environmental
exposures (1–4).

Three categories of biomarkers have been
identified: biomarkers of effect, which are
cellular responses that reflect sublethal expo-
sure-related damage to a system; biomarkers
of exposure, which are reversible upstream
markers that respond before cellular damage
occurs; and biomarkers of susceptibility,
which refer to individual variations in the
genes coding for stressor-induced cellular
response (5). Proteins whose genes are influ-
enced and induced by environmental stimuli
or ecologic variations are called ecoproteins,
in contrast to the constitutive, structural,
“eco-free” proteins. Ecoproteins, which are
generally highly inducible and conserved in
nature, represent protective mechanisms
against environmental stress and amplify the
system’s ecophysiologic adaptation to envi-
ronmental conditions.

Among ecoproteins, stress proteins have
been abundantly studied as a biomarker of
effect for pollutants (6,7). Heat-shock proteins

(HSPs) represent the most abundant and
widely studied group of stress proteins. HSPs
are induced as an adaptive response on expo-
sure to a variety of cellular injuries including
oxidative damage. In particular, the cytosolic,
inducible, 72 kDa HSP (Hsp70) is induced
by oxidants both in vitro and in vivo (8–10),
and its expression has been used as an indica-
tive response to environmental stress and an
interesting candidate as biomarkers of effect
(11–14). Optimal biomarkers would be bio-
markers of exposure, which could provide the
earliest, most upstream warning signs of envi-
ronmental stress exposure. Mitochondria are
highly sensitive to oxidants and to toxic expo-
sure–mediated cell death (15–17). We have
previously shown that mitochondria were a
target for reactive oxygen species–mediated
effects of in vitro tobacco smoke (TS) expo-
sure in human monocytes (18). We thus
hypothesized that mitochondrial alterations,
as determined by mitochondrial membrane
potential (∆ψm), could represent a primary
target for oxidant toxicity and could be used
as a specific biomarker for oxidant-mediated
exposure.

In this study, we first compared the vari-
ability of baseline ∆ψm to baseline Hsp70
expression in human monocytes isolated
from the blood of healthy donors. We then
analyzed the effects of two oxidant-mediated
environmental stressors, TS and γ-radiation,
on ∆ψm. Our data suggest that the inherent
variability of baseline levels of Hsp70
detected in human cells renders Hsp70
expression difficult to use as a biomarker for
in vivo exposures, though it remains adequate

for in vitro studies. In contrast, ∆ψm might
be an adequate biomarker of oxidant-medi-
ated environmental stress, both in vitro and
in vivo.

Materials and Methods

Reagents. We purchased paraformaldehyde
and saponin from Sigma (St Louis, MO,
USA), and culture medium (RPMI 1640 and
Dulbecco’s modified Eagle medium), fetal
calf serum (FCS), phosphate-buffered saline
(PBS), L-glutamine, bovine serum albumin
(BSA, fraction V), and HEPES buffer from
ICN Biochemicals (Costa Mesa, CA, USA).
We purchased 5,5´,6,6´-tetrachloro-
1,1´,3,3´-tetraethylbenzimidazolylcarbocya-
nine iodide (JC-1) from Molecular Probes
(Eugene, OR, USA). The monoclonal anti-
bodies directed against the inducible form of
Hsp70 [mouse immunoglobulin (Ig)G1,
SPA-810] were from Stressgen (Victoria,
Canada). The F(ab´)2 fragment of rabbit
anti-mouse IgG conjugated to fluorescein
isothiocyanate (FITC), used as secondary
antibody, was from Dako (Glostrup,
Denmark).

Cells and culture conditions. We obtained
anonymous donated blood through the
Assistance Publique Hopitaux de Paris
(APHP), in the form of buffy coats. We iso-
lated monocytes by Ficoll gradient centrifuga-
tion and purified them by adherence as
described previously (18). We maintained
monocytes (2.5 × 105/mL) in RPMI-1640
medium containing 10% fetal calf serum, 2
mmol/L glutamine, and 25 mmol/L HEPES.

In vitro exposure to TS. A peristaltic
pump-smoke machine (Heinr. Borgwaldt
RM1/G, Hamburg, Germany) generated TS-
bubbled PBS from mainstream smoke of
standard cigarettes (reference 2R1, University
of Kentucky, Lexington, KY, USA) through
a puffing mechanism mimicking the
human smoking pattern (one puff = 2 sec,
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35 mL/min) (18,19). The smoke of one cig-
arette corresponds to 10 puffs bubbled in 5
mL of PBS, the final dilutions being
expressed as puff/mL of culture medium.
We incubated TS-exposed monocytes for
3 hr before analysis.

Exposure to in vitro γ-radiation. We
performed in vitro γ-radiation at room tem-
perature, in air, using a γ-ray source (137Cs,
irradiator IBL637) at a fixed dose rate of
2 Gy/min. We exposed cells to 5 Gy and
allowed them to recover for 6, 24, 48, or 72
hr. At indicated time points, we collected
radiated and control cells and determined
∆ψm disruption.

Detection of Hsp70 levels in human
monocytes. We determined baseline levels of
Hsp70 in control human monocytes by flow
cytometry analysis (20). Briefly, we fixed
cells for Hsp70 analysis for 10 min in
paraformaldehyde 3% and then washed and
incubated them with 50 µL saponin 0.6%,
allowing permeabilization of the cell mem-
brane. We detected intracellular Hsp70 with
the anti-human antibody against the cytoso-
lic inducible Hsp70 at a dilution of 1/100 in
PBS with BSA at 1% (PBS/BSA) for 10
min. We removed unbound antibodies and
stained cells with FITC-conjugated rabbit
anti-mouse IgG at a dilution of 1/30 in
PBS/BSA for 10 min before flow cytometry
analysis. We performed flow cytometry on
5,000 cells/sample using an EPICS Elite
flow cytometer (Coulter, Miami, FL, USA)
equipped with a single 488-nm argon laser.
We express baseline expression of Hsp70 as
percentage of cells expressing Hsp70 and by
the mean fluorescence intensity.

Determination of ∆ψm: effects of in
vitro exposure to TS. We determined baseline
∆ψm by staining mitochondria with JC-1

(21). The lipophilic cation JC-1 forms J-aggre-
gates in the matrix of intact mitochondria
(emitting at 590 nm) or is released in a
monomeric form (527 nm) from depolarized
mitochondria. Thus, mitochondrial membrane
depolarization is associated with a shift in JC-1
fluorescence emission, from red to green. We
suspended human monocytes in 0.5 mL of
JC-1 solution (50 ng/mL in PBS) and incu-
bated them for 10 min at 37°C in the dark
before immediately analyzing them by flow
cytometry. We counted 5,000 cells for each
sample in acquisition and analyzed them using
Elite 4,01 software; we express the results as
percentage of cells with disrupted ∆ψm.

Detection of ∆ψm disruption: relation to
in vivo exposure to TS. Healthy, adult vol-
unteers gave informed consent to donate 20
mL of blood. Volunteers consisted of seven
nonsmokers (never smoked; three males and
four females; mean age, 28 ± 6.5 years) and
eight smokers (15–25 cigarettes/day; four
males and four females; mean age, 28 ± 3.5
years). The study was conducted at Cochin
Hospital, Paris, France, where blood samples
were taken. We isolated monocytes immedi-
ately after the sampling and tested the cells
to evaluate baseline levels of mitochondrial
membrane depolarization.

Statistical analysis. Statistical analysis was
performed using the Mann-Whitney U-test.

Results

Baseline variability in Hsp70 expression and
∆ψm in human monocytes. We performed
this study in human monocytes because they
are adequate for further cohort studies
according to their accessibility and their high
sensitivity to oxidants, especially in terms of
stress protein induction (22,23). We com-
pared interindividual variation in Hsp70
expression with that of ∆ψm disruption in
human monocytes from anonymous blood
donors and performed flow cytometry, a
rapid, reliable and well-adapted method for
evaluating Hsp70 expression and ∆ψm in
intact cells (20,21). Although baseline levels

of any optimal biomarker to be used in vivo
have to be stable from one individual to
another, in human monocytes the percent-
age of cells with baseline ∆ψm disruption
ranged from 1.4% to 23.0%. The inherent
variability observed for Hsp70, measured as
percentage of cells expressing Hsp70, varied
from 0.7% to 90%, and mean fluorescence
intensity varied from 1 to 3.6 (Figure 1).

Effects of in vitro TS exposure on ∆ψm.
We have previously shown that in human
monocytes from healthy donors exposed for
3 hr to in vitro increasing concentrations of
TS solution, ∆ψm decreased with increasing
concentrations of TS (18). Here we report
on our extension of that study to a larger
population. Using the same protocol, we
studied over 100 donors and achieved the
same results: a decrease in ∆ψm with
increasing concentrations of TS. Correlation
coefficients ranging from 0.799 to 0.970
indicated a strong linear association between
TS concentrations and ∆ψm. Table 1 shows
10 representative experiments.

Variability in baseline ∆ψm: relation to
in vivo exposure to TS. Because we tested the
donors anonymously, determining whether
the small yet perceptible baseline variation of
∆ψm resulted from such differences as age,
sex, smoking status, or other environmental
exposure was not feasible. We therefore per-
formed another set of experiments using
monocytes from volunteers with known
smoking status. Baseline levels of ∆ψm were
determined in monocytes from eight young
and otherwise healthy smokers and seven
nonsmokers. Monocytes from smokers (rep-
resenting in vivo TS exposure) had signifi-
cantly higher ∆ψm disruption than those
from their nonsmoking counterparts. The
mean percentage of cells with ∆ψm disrup-
tion in the smoking population (n = 8) was
13.3% ± 1.3 compared with 7.4% ± 0.9 (n =
7) for the nonsmokers (p < 0.05; Figure 2).

Effects of in vitro γ-radiation exposure
on ∆ψm in human monocytes. ∆ψm suscep-
tibility to oxidants and the scarcity of reliable
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Figure 1. Variability of baseline ∆ψm disruption
compared with Hsp70 expression in human circu-
lating monocytes: baseline ∆ψm disruption (JC-1)
and Hsp70 expression were determined by flow
cytometry in human monocytes from blood of,
respectively, 25 (∆ψm) and 15 (Hsp70) anonymous
healthy donors. For ∆ψm detection, results are
percentage of cells with disrupted ∆ψm; for
Hsp70 expression, results are both percentage of
cells expressing Hsp70 and baseline mean fluo-
rescence intensity. 
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Table 1. ∆ψm disruption as a function of in vitro TS exposure of human circulating monocytes. 

Experiment Control 0.03 0.06 0.12 0.18 0.24 0.3 r Value

1 11.6 18.1 13.7 55.0 20.4 97.8 98.9 0.868
2 10.5 7.5 50.7 96.5 95.7 93.1 99.4 0.856
3 5.9 6.1 7.3 21.6 48.4 66.9 73.8 0.979
4 17.7 13.4 17.1 23.4 70.7 75.8 84.0 0.943
5 8.2 23.2 17.1 20.0 27.1 31.1 75.3 0.835
6 7.6 9.3 5.9 5.6 6.6 22.0 38.0 0.799
7 10.3 12.0 10.6 22.6 21.7 22.9 37.9 0.926
8 12.2 13.5 13.9 17.3 21.9 22.0 38.1 0.914
9 23.0 11.3 25.7 35.9 58.1 87.2 80.5 0.952
10 7.3 8.3 13.3 14.5 36.5 40.8 47.4 0.970
Mean 12.5 12.3 17.3 31.2 40.7 55.9 67.3
SEM 1.7 1.6 4.0 8.4 8.8 9.9 7.9

Human monocytes from 10 anonymous blood donors were exposed for 3 hr to TS exposure ranging from 0.03 to 0.3
puff/mL. Monocytes were then tested for ∆ψm disruption using flow cytometry. The equation corresponding to ∆ψm dis-
ruption as a function of in vitro exposure is 19.01 with an r value of 0.68. For the same increase in TS concentration, ∆ψm
decreased 1.9-fold compared with control.



and reproducible methods for testing radia-
tion exposures motivated our study of the
effects of another oxidant-mediated environ-
mental exposure, ionizing radiation. We
exposed human monocytes to a single dose
of γ-radiation (5 Gy) and studied γ-radia-
tion-induced modifications in ∆ψm, 6, 24,
48, and 72 hr after radiation exposure
(Figure 3, Table 2). Although ∆ψm did not
vary significantly in unexposed cells at each
recovered time, significant γ-radiation-
induced ∆ψm disruption was detectable
24 hr after radiation (p < 0.05), whereas cell
death evaluated as a control for radiation
toxicity was detected after 48 hr (30% ± 7.8
of cell death; n = 10) and peaked at 72 hr
(data not shown).

Discussion

In this study, we report low variability of
∆ψm compared with established biomarkers
such as Hsp70, and a high sensitivity of
∆ψm disruption to oxidant exposure. Both
findings favor the use of ∆ψm as a selective
in vitro and in vivo biomarker for exposure
to oxidants.

To maximize its utility, a biomarker
must have the ability to respond to a large
number of chemical exposures. We thus
chose to study exposure to oxidants because
of their significance in environmental expo-
sure. They are indeed involved in the toxic-
ity of many products and in the pathogenesis
of many diseases (24–26). We chose TS
exposure as a model for oxidative stress, first,
because it has well-known effects on the
health of smokers (27) and, second, because
oxidants play a central role in TS-mediated
toxicity and carcinogenesis (18,28–30). TS
could also represent a prototype for studying
the cellular response to other chemicals
whose toxicity is enhanced by oxidants.

Collapse of ∆ψm can occur by several
mechanisms independent of oxidant expo-
sure, such as various exposure to toxins or
physical damage. However, TS is a complex
pollutant (it contains > 3,600 different com-
pounds). Previous studies indicate that TS-
mediated ∆ψm disruption relates to its
oxidants content (18,31,32). Furthermore,
TS induces other markers of oxidative stress

such as heme oxygenase (22,31,33), pro-
motes lipid peroxidation, and decreases glu-
tathione levels, thus providing direct
evidence of the oxidative stress induced by
TS (32,34,35). The high sensitivity of ∆ψm
to TS exposure and the role of oxidants in
TS-mediated toxicity led us to study the use
of ∆ψm as a biomarker for oxidants.

By comparing the baseline levels of ∆ψm
to a well-known biomarker, Hsp70, we
showed that the variability of Hsp70 expres-
sion as measured by flow cytometry in
human monocytes was up to 10 times higher
than that of ∆ψm disruption. The variability
in the percentage of cells expressing Hsp70
was approximately 1:130, which is the lower
range of what has been described by others
using the same technique or other, less sensi-
tive methods (20,36). To be an adequately
useful indicator for in vivo exposure, a bio-
marker has to demonstrate as little variability
as possible from one donor to another.
Thus, the inherent variability of baseline lev-
els of Hsp70 detected in human cells renders
Hsp70 expression difficult to use as a bio-
marker for in vivo exposures, though it
remains a most adequate biomarker for in
vitro and ecosystem studies. In contrast, the
variability of ∆ψm was approximately 1:16
among 100 subjects, thus making this para-
meter potentially more suitable for studying
the effects of in vivo exposures.

We have already shown that TS induces
Hsp70 expression as well as mitochondrial
alterations in several mammalian cells,
including normal human monocytes
(18,31). ∆ψm disruption, as an early pre-
requisite step toward programmed cell death
(16,17), has been detected after 3 hr of
exposure to TS in human monocytes,
whereas cell death has not been detected
before 16 hr of exposure (18,19,31), thereby
meeting the criterion of sensitivity with
respect to the cell death end point.
Moreover, we performed detection of ∆ψm
disruption using the lipophilic cation JC-1,
chosen as a specific and sensitive probe for
cytometric analysis of ∆ψm disruption.
Indeed, it has been previously shown that
JC-1 is a reliable probe for analyzing ∆ψm
changes with flow cytometry, whereas it is

not sensitive to the depolarization of plasma
membrane (37).

We tested the role of oxidant-specific
mechanisms in mediating the effects of TS
by preexposing cells to the antioxidant
N-acetyl-L-cystein (NAC) for 1 hr before TS
exposure. NAC pretreatment abolished
TS–mediated ∆ψm disruption (18).
Moreover, hydrogen peroxide (H2O2), used
at concentrations estimated similar to those
found in TS, also induced ∆ψm disruption
in a concentration-dependent manner (data
not shown). In contrast, nonoxidative com-
pounds of TS such as the carcinogen
benzo[a]pyrene had no effect on ∆ψm even
when used at toxic concentrations (> 50
µM) (31). Based on these data, we suggest
that ∆ψm disruption may be an early, oxi-
dant-specific biomarker.

Interestingly, for those donors with a
high baseline percentage of cells with ∆ψm
disruption (Figure 2; donors 2, 4, and 9),
initial exposure to TS (0.03 puff/mL) had
no effect on ∆ψm, whereas those with low
baseline percentage of cells with ∆ψm dis-
ruption (donors 1, 3, 5, 6, 7, 8) were sensi-
tive to this low concentration of TS
exposure. According to ∆ψm sensitivity to
in vitro TS exposure, we anticipated that the
observed differences in baseline ∆ψm and in
the in vitro sensitivity to TS might be the
result of voluntary in vivo exposure to TS:
cells with relatively high levels of baseline
∆ψm disruption would be from smokers and
cells with relatively low levels of ∆ψm dis-
ruption would be from nonsmokers. By test-
ing donors with known smoking status, we
corroborated the hypothesis that in vivo
smoking status may influence ∆ψm because
smokers had a significantly higher baseline
percentage of cells with ∆ψm disruption than
nonsmokers. The possibility that the
observed differences in ∆ψm of smokers and
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Figure 2. ∆ψm disruption as a function of in vivo
TS exposure in human circulating monocytes:
baseline ∆ψm disruption of monocytes isolated
from blood of seven nonsmoker volunteer donors
compared with baseline ∆ψm disruption of mono-
cytes of eight smoker volunteer donors. Flow
cytometer analysis revealed that nonsmokers had
a mean of 7.38% ± 0.93 monocytes with disrupted
∆ψm compared with 13.3% ± 1.30 in smokers
(p < 0.05 by Mann-Whitney U-test).
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Table 2. Effects of γ-radiation on ∆ψm disruption of human circulating monocytes.

Experiment 6 hr 24 hr 48 hr 72 hr
number Control 20 Gy Control 20 Gy Control 20 Gy Control 20 Gy r-Value
1 5.3 4.3 4.0 27.9 5.7 33.4 61.0 50.5 0.973
2 2.0 12.3 5.4 25.9 7.3 39.9 0.997
3 15.8 15.1 16.3 33.4 17.8 44.8 17.9 45.8 0.940
4 6.8 5.8 5.4 9.3 6.9 14.5 10.3 30.2 0.958
5 8.1 14.5 8.5 36.7 10.1 57.3 0.978
6 17.3 19.1 19.8 40.1 21.9 94.2 0.895
7 6.3 7.5 7.1 26 8.1 30.8 7.4 50.3
Mean 8.6 8.1 8.6 20.4 10.3 32.3 11.6 52.6
SEM 2.3 2.4 2.2 3.4 2.2 3.8 2.3 7.7
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nonsmokers could be related to impaired
oxidative metabolism caused by carbon
monoxide should be verified. Moreover,
additional experiments would test ∆ψm in
larger cohorts of subjects controlled for other
environmental susceptibility factors.

Data on environmental exposures to
γ-radiation are generally based on estimates
of radiation-induced cancer risk derived
from studies of atomic bomb survivors, irra-
diated victims of Chernobyl, or patients irra-
diated for therapeutic purposes. Data
obtained with these high doses are then
extrapolated for low-level exposures. The
carcinogenic effect of chronic, low-level radi-
ation exposure can be assessed from epi-
demiologic studies of cancer among workers
in the nuclear industry. However, these
studies provide only retrospective and uncer-
tain (because of extrapolation) information
rather than sensitive and rapidly detectable
biomarkers of ionizing radiation. Recent
research has focused on the analysis of
genomic translations or other chromosome
aberrations as biomarkers of radiation expo-
sure (38–40). However, current biomarkers
for radiation are still imprecise and insuffi-
cient (41). Because ionizing radiation, par-
ticularly γ, generates abundant amounts of
oxidants as a result of water radiolysis (42),
we tested ∆ψm disruption as a biomarker for
in vitro γ-radiation exposure. According to
our study, ∆ψm appears to be a sensitive and
early indicator of in vitro radiation exposure,
substantiating our other results showing
∆ψm to be an effective early biomarker of
oxidant-mediated exposures. Further studies
will test the effects of in vivo γ-radiation
exposure.

Future epidemiologic applications of
∆ψm as a biomarker include gauging health
risks associated with in vivo exposures to
oxidant-mediated stressors such as radiation
and air pollution. ∆ψm could also be used
for in vitro studies as a screening procedure
to detect any oxidative toxicity of new indus-
trial compounds.
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Figure 3. Effects of γ-radiation on ∆ψm disruption of human circulating monocytes: ∆ψm disruption of irradiated human monocytes (5 Gy) as a function of recov-
ery time (6, 24, 48, and 72 hr). Data are from one representative experiment out of seven, which are listed in Table 2. 
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scientists and grantees are performing basic studies of our susceptibility to environ-
ment-related disease: demonstrating that a carcinogen in cigarette smoke (benzo(a)pyrene) alters part
of a gene to cause lung cancer . . . showing the effects of fetal exposure to PCBs . . . developing a strain
of mouse that lacks functional estrogen receptors and that helps evaluate how some pesticides and
other estrogen-like compounds might affect development and reproduction . . . discovering the genes
for breast, ovarian, and prostate cancers . . . identifying women’s optimal days of fertility . . . seeking to
reverse the damage from lead exposure . . . finding alternatives to traditional animal tests . . .
pinpointing the functions of specific genes by eliminating them from specially bred mouse lines . . .
discovering a way, using ordinary yeast cells, to isolate and clone genes and other fragments of genetic
material more quickly . . . showing the effects of urban air on lung function . . .
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